The F protein of Helicoverpa armigera single nucleopolyhedrovirus can be substituted functionally with its homologue from Spodoptera exigua multiple nucleopolyhedrovirus.

نویسندگان

  • Manli Wang
  • Ying Tan
  • Feifei Yin
  • Fei Deng
  • Just M Vlak
  • Zhihong Hu
  • Hualin Wang
چکیده

F proteins of group II nucleopolyhedroviruses (NPVs) are envelope fusion proteins essential for virus entry and egress. An F-null Helicoverpa armigera single nucleocapsid NPV (HearNPV) bacmid, HaBacDeltaF, was constructed. This bacmid could not produce infectious budded virus (BV) when transfected into HzAM1 cells, showing that F protein is essential for cell-to-cell transmission of BVs. When HaBacDeltaF was pseudotyped with the homologous F protein (HaBacDeltaF-HaF, positive control) or with the heterologous F protein from Spodoptera exigua multinucleocapsid NPV (SeMNPV) (HaBacDeltaF-SeF), infectious BVs were produced with similar kinetics. In the late phase of infection, the BV titre of HaBacDeltaF-SeF virus was about ten times lower than that of HaBacDeltaF-HaF virus. Both pseudotyped viruses were able to fuse HzAM1 cells in a similar fashion. The F proteins of both HearNPV and SeMNPV were completely cleaved into F(1) and F(2) in the BVs of vHaBacDeltaF-HaF and vHaBacDeltaF-SeF, respectively, but the cleavage of SeF in vHaBacDeltaF-SeF-infected HzAM1 cells was incomplete, explaining the lower BV titre of vHaBacDeltaF-SeF. Polyclonal antisera against HaF(1) and SeF(1) specifically neutralized the infection of vHaBacDeltaF-HaF and vHaBacDeltaF-SeF, respectively. HaF(1) antiserum showed some cross-neutralization with vHaBacDeltaF-SeF. These results demonstrate that group II NPV F proteins can be functionally replaced with a homologue of other group II NPVs, suggesting that the interaction of F with other viral or host proteins is not absolutely species-specific.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua.

Binding studies using (125)I-Cry1Ac and biotinylated Cry1Fa toxins indicate the occurrence of a common receptor for Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Our results, along with previous binding data and the observed cases of cross-resistance, suggest that this pattern seems to be widespread among lepidopteran species.

متن کامل

The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome.

The nucleotide sequence of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) DNA genome was determined and analysed. The circular genome encompasses 131,403 bp, has a G+C content of 39.1 mol% and contains five homologous regions with a unique pattern of repeats. Computer-assisted analysis revealed 135 putative ORFs of 150 nt or larger; 100 ORFs have homologues in Autogr...

متن کامل

Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells.

Group II nucleopolyhedroviruses (NPVs), e.g. Helicoverpa armigera (Hear) NPV and Spodoptera exigua (Se) MNPV (multiple NPV), lack a GP64-like protein that is present in group I NPVs, e.g. Autographa californica (Ac)MNPV, but have an unrelated envelope fusion protein named F. Three AcMNPV viruses were constructed by introducing AcMNPV gp64, HearNPV f or SeMNPV f genes, respectively, into a gp64-...

متن کامل

The Host Specificities of Baculovirus per os Infectivity Factors

Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host's midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 ...

متن کامل

A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity.

Crystal toxin Cry1Ca from Bacillus thuringiensis has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops (Bt crops) expressing Cry1A toxins and may be useful as a potential bioinsecticide. The mode of action of Cry1A is fairly well understood. However, whether Cry1Ca interacts with the same receptor proteins as Cry1A r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of general virology

دوره 89 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2008